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The technique of inner projection is used for the first time in a chemical context, namely for the 
study of the ground state energy of the Pariser-Parr-Pople model of the benzene molecule. The 
lower bound for the energy is calculated for three types of parametrization. These results are 
compared with the "exact" energies which are obtained from full configuration interaction. It 
is shown that the inner projection technique provides very good lower bounds for the energy. 
In addition, we compare these inner projection results with those obtained by other approxima
tive techniques, namely with the results of the Coupled Pair Many Electron Theory. A discussion 
of the application of the method of intermediate hamiltonians and the inner projection technique 
is also included. 

In quantum theory, the energies of stationary states of a physical system are deter
mined from the Schrodinger equation. However, in most cases, solving exactly the 
latter appears to be an impracticable task: it is then preferable to approximate the 
energy rather than trying to obtain its exact value. One way to subserve this purpose 
consists of bracketing the energy: it is thus very useful to develop techniques for the 
calcultion of lower and upper energy bounds. ' 

The determination of upper bounds constitutes a relatively simple problem: to 
this end, a variational principle is usually applied. On the other hand, the determina
tion of lower bounds is a considerably more complicated matter. This problem has 
attracted the attention of many researchers; for instance, it was the subject of a series 
of papers by Lowdin and coworkers 1 - 11. The ideas of inner projection and bracketing 
techniques are central to these studies. They were partly inspired by the work of 
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Inner Projection Technique 1911 

Alexander Weinstein12 and his school and, in particular, by the papers of Bazley 
and Fox 13, built on the concept of intermediate hamiltonians. 

The method of inner projection was used and refined in a series of papers I4 .18. 

The concept of renormalized inner projection was introduced and applied with 
remarkable success15 - 18 . In the next section of this paper, we will briefly present 
the basic ideas of the optimal inner projection technique (without renormalization) 
and of the method of intermediate hamiltonians. Although these methods produce 
in principle identical results, the optimal inner projection scheme offers some 
practical advantages which will be pointed out. 

The estimation of lower bounds is, as previously indicated, a really intricate 
problem and all applications of techniques developed to meet that end, have been 
limited until now to one particle and two-particle systems. In this paper, the method 
of optimal inner projection will be applied to obtain lower bounds to the eigenvalues 
of Pariser-Parr-Pople hamiltonians. In particular, we shall study the lower bounds 
of the ground state energy of the PPP model of the benzene molecule. In doing so, 
this study represents a first attempt to use the concept of lower bounds in a truly 
chemical context. 

Our future goal, for subsequent papers, is to extend the calculations of lower 
energy bounds to excited states as well as to study the relation between the inner 
projection technique and the coupled cluster theory. It is our intent to propose 
the concept of an approximative lower energy bound and thus allow the considera
tion of more realistic hamiltonians than PPP hamiltonians. 

THEORETICAL 

Method of Inner Projection 

In this communication, the main ideas behind the method of inner projection are 
very briefly summarized. A complete description of the method can be found in 
literaturel . A shorter presentation is given in paper by Cizek and Vrscayl4. 

Consider the hamiltonian 

H = H o + V, (1) 

where H o is an unperturbed hamiltonian and V the perturbation. Let g == 
== (¢~o), ¢\O), ... , ¢ia..? I) be a k-dimensional manifold span.ned by the first k eigen
functions {¢IO)} of Ho' We then define a k x k matrix A whose entries aij are given 
by the following expression 

(2) 
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where 

(3) 

and E~~\ is the eigenvalue of Ho corresponding to the eigenfunction ¢~~\. 
One of the most important features of the method of inner projection is the fact 

that the summation in Eq. (2) is in principle not restricted to 1 ~ k. However, in 
well-behaved cases, this summation runs over a finite index since the perturbed 
elements vij vanish after some i and some j. In the case of the ground state energy 
of the benzene molecule, the manifold considered consists only of the ground state 
al).d biexcited state: it is then sufficient to limit the summation over the ground, 
biexcited, triexcited and tetraexcited states. 

The final expression for the lower bound is given by 

, E(O) " (-1) 
8 1 = ° + L.. Vli a ij V jI , (4) 

i,j 

where (a - 1) ij denote an element of the inverse matrix of A. 
In this paper, we shall use the so-called optimal inner projection14, which is a method 

that produces a sequence of lower bounds iteratively. By iteration we understand that 
the left hand side of Eq. (4) is taken as input in Eq. (2) and that this process is re
peated until the convergence is achieved. In such a way, an optimal lower energy 
bound is obtained for the given manifold. 

Method of Intermediate Hamiltoniam 

Now let us partition the perturbation V of the hamiltonian H = H o + V in the 
following way: 

[
M N 0] 

V = NT P Q , 
o QT R 

(5) 

where M is a k x k matrix whose entries Mij are the elements <¢~O)IHol ¢jO» and 
¢~o), ¢jO) are eigenfunctions of Ho belonging to the manifold g, N is a k x m matrix 
whose entries Nil' are the states not in g but interacting with at least one eigen
function in the manifold g. The matrices P, Q and R represent the rest of the per
turbation and are not directly used in the calculation of lower bounds in both 
methods. The transpose matrix of Nand Q are denoted by NT and QT respec
tively. Finally, 0 represents the null matrix. 

Let B denote the k x (k + m) matrix whose entries Bij are given by 

B .. = {Mij 
IJ N .. 

'J 

if i, j ~ k, 

if i ~ k and k + 1 ~ j ~ m . 
(6) 
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Inner Projection Technique 1913 

We then obtain a new perturbation matrix V' 

(7) 

where aT denotes the transpose matrix of a and M -1 the inverse matrix of M. 
It can be shown that V' has the form 

V' = [M N], 
NT S 

(8) 

where S = N™-1N. We then diagonalize the intermediate hamiltonian H' = 
= Ho + V'. The lowest eigenvalue thus obtained should be identical to the optimal 
lower bound obtained by the optimal inner projection technique for a given mani
fold g. 

When comparing the method of intermediate hamiltonians with the inner projec
tion iterative scheme, the advantage in using the latter becomes clear. In this case, we 
are looking at a nonlinear k-dimensional problem which can easily be solved by 
a bracketing technique. In the method of intermediate hamiltonians, although the 
problem is linear, the dimension is (k + m). In the case of the PPP hamiltonian 
of the benzene molecule, the difference between k and m is not great and thus the 
results obtained using both methods required similar efforts. However, for systems 
of ten electrons (for instance), when the value of m is much greater than k, the dia
gonalization of the (k + m) x (k + m) matrix needed in the method of intermediate 
hamiltonians, demands more work than the calculations required by the optimal 
inner projection technique. In addition, let us note that the method of intermediate 
hamiltonians requires a diagonalization which consists, in principle, in an infinitely 
many step procedure. Applying the optimal inner projection, the situation is similar. 
However, if satisfied after some iterations, we get a closed expression for the lower 
energy bound, provided of course that the expression for the initial upper bound 
was also in a closed form. This constitutes another advantage for using the inner 
projection technique. 

Pariser-Parr-Pople Model 

The use of models in theoretical chemistry and theoretical physics is very helpful 
as the solution of the actual problem is usually extremely tedious to get and brute 
force should be applied. Moreover a qualitative analysis of the results obtained by 
these brute force techniques is very difficult. On the other hand, models should be 
employed with care. Unfortunately, the majority of the existing models belongs to 
two categories. The first includes models which are simple and transparent but far 
from a true representation of reality, whereas the second includes models which 
are close to reality but sacrifice simplicity and transparency. 
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The PPP model for the description of n electrons in planar conjugated hydro
carbons19 - 39 represents an exception: the mathematical structure of the PPP model 
is reasonably simple and transparent while, at the same time, the model delineates 
fairly accurately the most important features of the exact hamiltonian. Indeed, the 
long range behavior of electrostatic forces is well described by this model. In addition, 
some basis assumptions such as the ZOO (zero differential overlap) are well justified2 s. 

Let us consider alternant planar conjugated hydrocarbons in general with particular 
reference to the benzene molecule. Let us use second quantization for the description 
of the corresponding n electron system and introduce on the site (carbon atom) i, 
creation and destruction operators: creation operators in this site are denoted by X~ 
arid X~, where IX stands for positive spin and P for negative spin, and similarly 
destruction operators by Xb and X iP• Finally, the occupation number is given by 

(9) 

The PPP hamiltonian is then written in the form Hppp = Ho + V (see reUS), where 

(10) 

and 

V = t L (n i - 1)( n j - 1) Yij • (11) 
i,j 

The prime in Eq. (10) indicates that the summation runs only over neighbors, the 
Pij's are the resonance (hopping) integrals and the Yij's the integrals of electrostatic 
repulsion calculated semiempirically. In this paper, three different parametrizations 
will be used: Pariser-Parr-Pople (PPP), Mataga-Nishimoto (MN), and Theoretical 
(T); see Table I. Moreover, only the physical values of the resonance integral will 
be considered. 

TABLE I 

Values of the parameters for PPP model of benzene. The different parametrization are Mataga
-Nishimoto (MN), Theoretical (T), Pariser-Parr-Pople (PPP). All values are in eV 

Parameter 

p 
Yu 
Y12 

Y13 

Y14 

MN T PPP 

-2·3880 -2·7340 -2·3900 
10·8400 17·6180 10·5300 

5·2981 8·9239 7·300 
3-8551 5·5739 5·4600 
3·5050 4·8760 4-9000 
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We strongly emphasize that the operator V is positive definite for the physically 
reasonable Yij(Yij ~ 0) and this property being satisfied, the method of inner projec
tion can be applied to the PPP hamiltonians. The n electron system of the benzene 
molecule is of particular interest. Benzene has a high space symmetry and therefore 
the resulting CI matrix for the ground state is relatively small and easy to diago
nalize32 .33 • Indeed, a matrix corresponding to the ground state is constructed from 
22 states: one ground state, eight biexcited states, four triexcited states, eight tetra
excited states and one hexaexcited state. It would be possible to decrease the size 
of the matrix to 18 x 18 with the use of alternant symmetry, but we refrain from that 
treatment. We will thus consider a nine functions manifold, i.e. k = 9, and twelve 
functions interacting with the states in the manifold, i.e. m = 12. The results of 
applying the inner projection technique described in Theoretical are presented in the 
next section. 

RESULTS 

Coupled cluster technique (CC)40-S5 or its specialized version, the Coupled Pair 
Many Electron Theory (CPMET)40 has become these days a standard method for 
the evaluation of the ground state energy of the closed system. There is a certain 
similarity between CPMET and the inner projection technique. If triexcited states 
are omitted, both theories need the knowledge of the matrix elements between the 
ground state and the biexcited states, the matrix elements among biexcited states and 
finally, the matrix elements between biexcited states and tetraexcited states. In both 

TABLE II 

Correlation energy in different approximations for the sets of parameters (see Table I). The 
absolute values of the correlation energy are shown for the following techniques: Hartree-Fock 
(HF), Full Configuration Interaction (FCI), Inner Projection (IP), Coupled Pair Many Electrons 
Theory (CPMET) = (CCD), Configuration Interaction limited to biexcited states (B), and the 
linear version of the Coupled Pair Many Electrons Theory (LCPMET). The error (in parenthesis) 
is given in % with respect to the FCI correlation er.ergy. 

Method MN T PPP 
--~--

HF 0'0 (100) 0'0 (100) 0'0 (l00) 
FCI 1·421 (0'0) 3'261 (0'0) 0'597 (0'0) 
IP 1·441 (1'4) 3'381 (3'7) 0·603 (1'0) 
CPMET 1·417 (-0'3) 3-285 (0'7) O' 589 (- 1· 3) 
B 1'314 (-7'5) 2'840 (-12'9) O' 574 (- 3'9) 
LCPMET 1·492 (5'0) 3-683 (12-9) 0'603 (1'0) 
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theories, a knowledge of the matrix elements among tetraexcited states is not required. 
On the other hand, the goals of the two techniques are competely different. In 

CPMET, the main concern is to minimize the absolute error without attempting to 
determine whether the obtained energy is above or below the exact energy value. 
In inner projection, the objective is to obtain lower bounds: it is therefore natural 
to accept a worse error in absolute value as a price for the assurance of knowing 
that the resulting energy will be indeed a lower bound. This observation will be further 
discussed from a theoretical point of view in a forthcoming paper18: the present 
paper will be limited to the discussion of numerical results for physical values of 
parameters. 

The results are presented in Table II. The Hartree-Fock energy is chosen as 
a reference and the correlation energies are presented with their corresponding 
error with respect to the "exact correlation energy" FCI. As expected, the best 
results with respect to the absolute error are obtained by the CPMET. However, 
the MN and PPP parametrizations produce upper bound energies when compared 
with the exact energy while the T parametrization produce lower bound energies. 
Using the inner projection iterative scheme, lower bound energies are always ob
tained, but the absolute error is greater than using the CPMET. Results of configura
tion interaction limited to biexcited states (B) are also included for completeness 
of our study. These results are of course upper bound for the exact energy, but the 
absolute error compared with the CPMET is considerably bigger. Finally, we quote 
for comparison the results of linear version of the CPMET. Let us note that lower 
(upper) bounds to the energy correspond to the upper (lower) bounds to the absolute 
value of the correlation energy. 

In conclusion let us emphasize that this paper is only a first pilot study intended 
to investigate the application of the optimal inner projection method to a PPP 
hamiltonian. The results are very encouraging for a future two-folded extension 
of this work: the error of all methods as a function of f3 (which is playing role of 
coupling constant) will be first studied and secondly, the inner projection technique 
will be employed for systems larger than the benzene molecule. The final goal is 
a formulation of a method which would be applicable to more general types of 
hamiltonians than the PPP hamiltonians. In this case, we shall be obliged to introduce 
only "approximative lower bounds", but even these approximative quantities should 
be practically very useful. 

One of us (JC) would like to thank Prof. R. Lefebvre and his coworkers for a warm hospitality 
and many stimulating discussions during his stay in Paris last JUlle. This paper was supported ill part 
by a Natural Sciences and Engineering Research Council of Canada research grant (JC) which is 
gratefully acknowledged. 
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